SU-E-T-312: Optically Stimulated Luminescent Dosimeter Performance in High Dose Rate Brachytherapy.

نویسندگان

  • C Tien
  • J Hiatt
  • B Curran
  • E Sternick
چکیده

PURPOSE To investigate the use of optically stimulated luminescent dosimeters (OSLDs) for high dose rate (HDR) Ir-192 brachytherapy. While common in megavoltage radiotherapy applications, the performance of OSLDs using kilovoltage energies, high dose gradient and high dose rate regions ubiquitous to HDR has not been demonstrated. METHODS Commercially available nanoDotTM (Landauer, Glenwood, IL) OSLDs - 5mm diameter and 0.2mm thickness - were irradiated using an Ir-192 source in various geometries to determine dose rate dependence. Angular geometries were created using a circular applicator designed for accelerated partial breast irradiation by Accuboost®. RESULTS Response remained linear for high doses and was independent of dose rate. Specifically, the OSLDs were shown to be linear with dose up to 200 cGy then became slightly supra-linear up to 600 cGy. There was a slight angular dependence for OSLDs which becomes significant in 'edge-on' scenarios. An asymmetry in this angular dependence was discovered, but was attributed to cable curvature, point source approximation, and positioning within its plastic casing. CONCLUSIONS Clinical HDR doses of 300 cGy fall within the linear, dose-rate-independent region. Angular independence can be maintained by avoiding extreme 'edge-on' measurement geometries. Because of re- readability, OSLDs can serve as a permanent record or alternatively be annealed within a few hours using conventional fluorescent light. Lastly, OSLDs are produced for only $5 each. Due to these features, in conjunction with the dosimetric performance, OSLDs should be considered a reliable tool for in vivo HDR brachytherapy measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy

PURPOSE The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availa...

متن کامل

Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multis...

متن کامل

MR‐safe personal radiation dosimeters

Magnetic resonance imaging (MRI) is being rapidly integrated for cancer treatments-such systems are referred to as MRI-guided radiation therapy (MRIgRT). As the magnet of an MRI scanner is always on, the presence of a strong static magnetic field from the MRI scanner during radiotherapy delivery presents new challenges. One of the challenges is that a personal radiation dosimeter used to estima...

متن کامل

Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

PURPOSE The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. METHODS Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) ...

متن کامل

Dosimetric characteristics of 137Cs sources used in after loading Selectron system by Monte Carlo method

Background: For an effective treatment planning in brachytherapy, it is necessary to know the accurate source dosimetric information such as air kerma strength, exposure rate constant, dose rate constant and redial dose distribution. The usual method to determine these factors is thermo luminescent dosimeter (TLD) dosimetry. Nowadays, another more accurate method is known to be the Monte Carlo ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part14  شماره 

صفحات  -

تاریخ انتشار 2012